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A B S T R A C T

With the rise of GeoAI research, streetscape imagery has received extensive attention due to its comprehensive
coverage, abundant information, and accessibility. However, obtaining a holistic spatial–temporal scene
representation is difficult because places are often composed of multiple images from different angles, times
and locations. This problem also exists in other types of geo-tagged imagery. To solve it, we propose a
purely visual, robust, and reliable method for urban function identification at the street scale. We introduce
a method based on a two-layer spatially dependent graph neural network structure, which handles sequential
street view imagery as input (typically available in services such as Google Street View, Baidu Maps, and
Mapillary), with full consideration of the spatial dependencies among road networks. In this paper, we
construct an urban topological map network using OpenStreetMap data in Wuhan, China, and compute a
semantic representation of the scene as a whole at the street scale using a large-scale pre-trained model.
We construct the graph network with streets as nodes based on 28,693 mapping relationships constructed
from 75,628 street view images and 5,458 streets. Only 5.3% of the node labels were required to obtain
10 categories of functions for all nodes in the study area. The results demonstrate that by using appropriate
spatial weights, street encoder, and graph structure, our novel method achieves high accuracy of P@1 46.2%,
P@3 73.0%, P@5 82.4%, and P@10 89.9%, fully demonstrating the effectiveness of the introduced approach.
We also use the model to sense urban spatial–temporal renewal by computing time series street images.
The model is also applicable to the prediction of other attributes, where only a small number of labels
are required to obtain valid and reliable scene perception results. The example data and code is shared at:
https://github.com/yemanzhongting/Knowledge-and-Topology.
1. Introduction

Urban functions are aggregated areas resulting from various types
of human activities in urban space (Zhou et al., 2020; Crooks et al.,
2015). As the continuous expansion and development of cities lead to
an increasing need of monitoring and updating urban functions, we
have witnessed numerous efforts devoted into such studies (Hu et al.,
2021; Lu et al., 2022; Biljecki and Chow, 2022) in the recent years. The
city is the most dominant carrier of human activities (Liu et al., 2018).
Thanks to physical and social sensing networks, and the proliferation
of big data technologies, a wealth of multi-modal urban datasets are
generated, which has brought massive changes in the study of urban
functions (Zhang et al., 2019b).

Remote sensing imagery is an important data source for data-driven
urban function studies, providing a bird’s eye view that has a successful
history of capturing an overall understanding on land use (e.g., lakes,
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farmland, buildings, etc.) (Cao et al., 2018, 2020). However, such
imagery-based analysis lacks in-situ socio-economic semantic informa-
tion for understanding human-space interactions further (Zhang et al.,
2021b). Thus, the quality of urban function identification using such
top view imagery is often inadequate (Van de Voorde et al., 2011).
Meanwhile, the proximate sensing perspectives such as streetscape (or
street view) imagery (Qiao and Yuan, 2021) captured at high spatial
resolution facilitate obtaining detailed urban information (Zhang et al.,
2020; Chen et al., 2022). Numerous existing studies have asserted that
street view images are efficient in identifying urban functions (Xu et al.,
2022a; Biljecki and Ito, 2021), sometimes in conjunction with other
data sources such as point of interest (POI) (Hu et al., 2020a; Yao
et al., 2017), social media (Chen et al., 2017; Gao et al., 2017), taxi
trajectory (Hu et al., 2021), and night light remote sensing (Huang
et al., 2021).
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According to Liu et al. (2021), 51% of the urban function identifi-
cation study used only a single data source, 49% used two or more of
the above datasets (Liu et al., 2017; Yin et al., 2021), and POI serves as
the most widely used data, being used by 75% of studies. However, in
existing research, imagery of the streetscape has only been considered a
secondary data source, complementing other data sources (e.g. remote
sensing), to improve the identification accuracy (Fang et al., 2021; Qiao
and Yuan, 2021). This gap leads to devise the first research question of
whether we can perceive urban functions solely from visual data.

Taking advantage of the rapid progress of digital image processing,
many studies used neural networks for image classification (Hu et al.,
2020b; Kang et al., 2018), semantic segmentation (Lauko et al., 2020;
Qi et al., 2020) and object detection (Campbell et al., 2019; Chen et al.,
2020) the street scenes in the images. These studies, however, can
only address a single streetscape image. They cannot be generalized
to a broader area (Zhang et al., 2021b), as they cannot provide an
effective holistic representation of spatial units, such as for Area of
Interest (AOI) (Li et al., 2021a), Traffic Analysis Zone (TAZ) (Gong
et al., 2020; Chen et al., 2021a) or building footprints (Song et al.,
2022). Generating an overall semantic representation of the space is
the second question answered in this paper.

For sequential input data sources such as street view images, which
are common in both commercial and crowd-sourced platforms (e.g.
Google Street View, Baidu Maps, Tencent Maps, Mapillary, and Kar-
taView), it is essential to note that the pre-trained convolutional neural
network (CNN)-based methods (e.g., Resnet) can only process images
one by one (Zhang et al., 2021a; Yao et al., 2021). The typical way
to obtain a spatial unit embedding is to calculate the average of the
multiple images feature vectors. However, such an approach ignores
the location information of the imagery and prevents the model from
capturing the spatial heterogeneity of urban functional areas. That
is, it will not capture the spatial topological relationships between
those images, and also, the spatial location relationships between key
geographic entities within the images (Fang et al., 2021). Moreover,
there is information bias in representing spatial units with separate or
small number of images (Wang et al., 2021; Kang et al., 2018), and
the loss of spatial contextual information can lead to different urban
function identifications for the same region (Amiruzzaman et al., 2021).

As illustrated in Fig. 1, the results of both semantic segmentation
and object detection performed on street view imagery lack comprehen-
sive semantic information. Even if two images have similar proportions
of various elements after semantic segmentation, or the same objective
features exist after object detection, there may still be considerable
geographical differences in the actual situation described by the two
images due to the different spatial relationships between the elements
or features. More specifically, the street view images in Fig. 1 both con-
tain entities such as Building, Window, Tree, Street Light, Motorcycle,
and Car. Besides, the pixel proportions occupied by these entities in
the two images are similar. For example, the pixel ratio of the building
on Fig. 1 left image is 23%, the ratio of green plants is 20%, and the
ratio of pixels occupied by the sky is 28%, while the pixel ratio of the
building on Fig. 1 right image is 26%, the green view index is 28%,
and the sky view factor is also 28%. With the above information, it is
difficult to find the difference between the street view images of two
locations simply by the type of entity, the number of entities, or the
pixel ratio of the field of view.

To capture the spatial relationships between the street scenes, such
as the ones exhibited in Fig. 2, we use road data as a network structure
and choose the street with multiple streetscapes as the minimum spatial
unit. We design to capture two layers of spatial relationship, the first
one is to capture overlapping entities in different views, the second
one is to capture the spatial topology relationship between streets.
As the data source, we rely on OpenStreetMap (OSM) thanks to its
global coverage, ease of access, and quality evidenced by many urban
studies (Chen et al., 2021b; Pađen et al., 2022; Venerandi et al., 2022),
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but our approach is generalizable to other data sources.
Graph Neural Networks (GNN) can handle non-Euclidean structure
data and extract spatial features from the topological graph for learning
efficiently (Wang et al., 2022b,a). Existing studies have proved that
the performance of GeoAI models can be improved by considering
the spatial topology (Zhu et al., 2020). Besides, GNNs are able to
learn features of the nodes based on their local neighborhood, which
is defined by the edges connecting them. This allows GNNs to work
with only a small subset of the labeled nodes, or even with completely
unlabeled graphs (Zhao et al., 2022). While urban function (land use)
identification is a very typical label-scarcity type task, spending a
lot of manpower on land use labeling is time-consuming and labor-
intensive, and semi-supervised methods like GNN are very useful for
such task (Zhang et al., 2022a). In view of the above advantages, we
have witnessed an increasing use of GNNs in urban-related studies (e.g.
road traffic forecasting) (Zhao et al., 2019; Yu et al., 2020; Liu and
Biljecki, 2022; Abdelrahman and Miller, 2022).

Considering that urban functions will have certain co-location pat-
terns or spatial dependencies (Yu et al., 2017), we introduce GNN to
capture the topological relationships of roads in order to improve recog-
nition accuracy. Related research has attracted considerable attention
recently. For example, Hu et al. (2021) used traffic trajectory data,
treated roads as nodes and extracted the topological relations between
them. Nonetheless, such a relationship lacks semantic information and
the description of physical environment. This limitation is why the
trained model is not rich in predictions and can only identify three
types of functions: commercial, public, and traffic. Xu et al. (2022c)
described city region features based on POI data and relative relation-
ship between POIs, extended the prediction results to six categories.
However, it can only use the category attributes of the POI (a standard
treatment is to analogize POI categories, such as business, traffic, etc.
to ‘words’, and regions to ‘documents’, but much information is lost in
such methods (Yao et al., 2017)), and lacks the use of road network
topology information (Inoue et al., 2022).

Inspired by the application of vision-language multi-modality in
remote sensing image analysis (Wang et al., 2022b), we propose a two-
layer spatially dependent graph neural network based on knowledge
(socio-economic information extracted from the physical environment
of the streetscape) — topology (neighborhood relationships between
road networks). Using the urban road networks as a backbone, we
generated a street semantic knowledge graph and computed an embed-
ding representation for each street node. The first spatially dependent
layer is a knowledge layer that generates objective descriptions of street
view images in ‘human language’, which are then aggregated to the
whole street. In other words, calculating the caption of street scene.
Machine reasoning is used to deconstruct and understand the content
of the image, then generate a natural semantic description of the given
scene (Hossain et al., 2019).

To the best of our knowledge, some attempts have been proved to be
successful using such a cross-modal approach in understanding remote
sensing images (Shen et al., 2020; Li et al., 2021c), and such studies are
highly valuable for applications in disaster assessment, urban planning
and geographic information retrieval (Hong et al., 2020; Murali and
Shanthi, 2022). The cross-modal model has the ability to describe the
objects, attributes and relationships between objects that appear in the
image (Yang et al., 2022b), which will contain more information com-
pared to the traditional results of semantic segmentation (Amiruzzaman
et al., 2021) and object detection (Ning et al., 2022). Accurate scene in-
ference is a challenging task that requires a fine-grained understanding
of global and local entities in an image, as well as their attributes and
relationships, and also requires a joint contribution from the fields of
computer vision and natural language processing (Zhang et al., 2022a).

In this paper, we refer to the knowledge graph consisting of geo-
graphical entities and spatial location relationships between entities in
the streetscape as the street semantic knowledge graph (von Richthofen

et al., 2022; Li et al., 2021b; Chadzynski et al., 2022). The cross-modal
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Fig. 1. Examples of object detection and semantic segmentation on two scenes obtained from street view imagery. Although the analysis results of these two street views are
similar, there are considerable geographical differences in the actual conditions. The first was taken on a school road and the second on a commercial street, pieces of information
that may be instrumental for urban studies but out of reach of conventional methods using street-level imagery. Thus, we posit that traditionally used approaches do not give
full justice to the urban function identification and their distinction, and propose an enhanced approach relying on the sequential nature of imaging and a graph neural network
structure.
Source of the imagery: Tencent Street View.
Fig. 2. Schematic diagram of two-layers spatial relationship capture. For example, we identify a building from one image, and the same building may also appear in other images,
which establishes a relationship between the two images.
Source of the imagery: Tencent Street View. Source of the map: © OSM contributors.
technique is applied to urban street view interpretation to generate the
scene caption and the entity-relationship-entity knowledge triple.

The second spatially dependent layer is the topology layer, which
constructs a spatial weight matrix based on the road spatial topology. It
can take full advantage of the spatial dependence of the urban functions
distribution (Georganos et al., 2021). Our method can fully use the
graph semi-supervised learning features to obtain accurate prediction
results with only a small number of training labels. Considering that in
a spatial unit, street view images are often sampled in different times,
this means that not only socio-economic and physical built information
can be perceived, but also temporal–spatial changes, which was often
neglected (Xu et al., 2022b; Biljecki and Ito, 2021).

The main contributions of this paper are threefold:

• The first is a method for sensing urban functions based on pure
visual data, which is compatible with arbitrary images containing
geo-tags and has significantly broadened the application scenarios
of proximate sensing images in this field.

• The second is the solution to the sequence input and regional
representation of street view images by effectively using their
spatial location information. It can perceive city temporal–spatial
changes (city renewal) and provide more accurate street function
prediction products.

• The third is the generation of the street semantic knowledge graph
based on the intermediate products of the computation (physical
entities of the city, spatial location relationships of the entities)
to improve the urban comprehensibility.

On a broader scope, we also introduce a new use case of street view
imagery, a rapidly growing source of urban data, but not utilized for
this purpose hitherto.

Our study is organized as follows: the second section presents
the model architecture of our Spatio-temporal two-layer graph neural
network; the third section is about the experiments, which discusses the
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model accuracy and the Spatio-temporal representation performance,
then generates the knowledge graph for visualization; the last section
summarizes this work and discusses the advantages and applicability of
the model, which is of high value for urban planning and geographic
information retrieval, etc.

2. Method

Our method is divided into five parts, as shown in Fig. 3, Step 1 and
Step 2 are the encoder part of the model, and Step 3, Step 4, Step 5 are
the decoder part of the model.

Step 1: Cross-modal extraction scenario description (Street View
Captioning)

Each source or form of information can be referred to as a modality.
Cross-Modal Machine Learning (CMML) aims to achieve the ability
to process and understand data from multiple sources of modality
through a machine learning approach (Lin et al., 2016). The descriptive
text of images (caption) is a cross-modal process that converts images
into textual descriptions and provides rich semantic information for
further computation. There are three methods to generate image cap-
tions: template-based, retrieval-based, and sequence-generation-based
method (Zhao, 2021). The last method can not only obtain the cor-
respondence between image features and words but also learn the
sequence relationship between adjacent words and generate flexible
and variable descriptions, which is the method adopted in this paper.

Fig. 4 shows the detailed steps of the cross-modal computation,
where we input a street scene image and output the corresponding text
description, ‘‘A red car parked on the side of the road’’. The description
contains the vital physical entities of the city, the nature of the entities,
and the spatial location relationship between the entities. As such, we
can extract a triple like (‘‘A red car’’ ->s’’, parked on the side of ‘‘-
>r’’, the road’’ ->o). We perform a similar calculation for each image,
aggregating it to form a semantic description of each street.
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Fig. 3. Schematic diagram of the Knowledge-Topology Two Layers Spatially Dependent Graph Neural Network.
Fig. 4. Obtain street view descriptions based on the vision-language pre-trained model. The bottom-up mechanism (based on Faster R-CNN) extracts image regions and corresponding
feature vector, the top-down mechanism adjusts feature weighting.
Source of the imagery: Tencent Street View.
We use a vision-language model (Fig. 4) trained through the Bottom-
Up and Top-Down Attention to obtain urban street view captions (An-
derson et al., 2018; Rennie et al., 2017; Lu et al., 2020), its applicability
in street views can be found in Zhang et al. (2022a). During the
pre-training process, the model’s input consists of images and the
corresponding description text. Note that there is no relevant caption
dataset in the street view domain. Therefore, the model used the
Microsoft COCO caption dataset (Lin et al., 2014; Lu et al., 2017) for
the model training step, which consists of a variety of scenarios, both
indoor and outdoor.

The sequence generation unit consists of two LSTM layers (Hochre-
iter and Schmidhuber, 1997) and an attention layer. As shown in Fig. 4,
the model uses an object detection neural network (Faster R-CNN (Ren
et al., 2015)) to extract the image features and divides the image into 𝑘
regions, which are fed into the recurrent neural network together with
a text description containing 𝑁 words (tokens).

In Fig. 4, 𝑊𝑒 is the word vector matrix, ∏𝑡 is the one-hot encoding
of the word at time 𝑡, and the product of the two represents the word
vector of the input word 𝑦 at that moment. �̄� denotes the mean-pooled
156

𝑡

of an image feature, 𝑣𝑖 means the image feature of the 𝑖th region. Then
the conditional distribution over possible output words at the time step
𝑡 is:

𝑝
(

𝑦𝑡|𝑦1∶𝑡−1
)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊𝑝ℎ
2
𝑡 + 𝑏𝑝

)

(1)

Where 𝑊𝑝 is the parameter we need to train, 𝑏𝑝 is the weights and biases
to be learned, and the output 𝑦 is the word, i.e., the textual description
of the street image.

Step 2: Aggregate the images and calculate the scene embedding of
the street

Based on the scene description generated by Step 1, we treat the
street as a ‘document’ containing multiple ‘sentences’ (street scenes).
Through the mapping between street scenes and road networks, we can
obtain street-view neighborhood information, then calculate the feature
code of the street as a whole.

We encode the ‘document’ using the Bidirectional Encoder Repre-
sentations from Transformers (BERT) model (Vaswani et al., 2017),
which consists of 12 transformer layers, 12 attention heads, 768 di-
mensions, and 110M parameters. Subsequently, a 𝐷(768) dimensional
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Table 1
Semantic embedding of street scenes based on Bert encoder.

Dim
Street 0 1 2 3 4 5 6 7 8 ... 5457

0 −0.115 −0.436 −0.220 −0.464 −0.444 −0.553 −0.637 −0.397 −0.368 ... −0.650
1 −0.693 0.281 −0.226 −0.729 −0.263 −0.168 0.243 0.092 0.017 ... 0.285
2 −0.791 −0.359 −0.100 −0.690 −0.410 −0.188 −0.404 −0.249 −0.374 ... −0.280
3 0.359 −0.072 0.086 0.153 0.204 0.107 0.038 −0.017 −0.119 ... −0.022
4 0.070 −0.460 −0.218 −0.048 −0.266 −0.019 −0.341 −0.300 −0.190 ... −0.358
5 0.282 −0.613 −0.466 −0.389 −0.343 −0.796 −0.586 −0.580 −0.469 ... −0.570
6 0.099 −0.745 −0.691 −1.046 −0.657 −1.065 −0.523 −0.450 −0.888 ... −0.523
7 −0.249 0.492 0.754 0.098 0.435 0.322 0.300 0.523 0.489 ... 0.458
... ... ... ... ... ... ... ... ... ... ...
767 0.087 −0.190 −0.107 −0.216 −0.225 −0.125 −0.140 −0.059 −0.383 ... −0.067
Table 2
Categories, descriptions, and labeling status of urban functions.

ID Type Description Region
number

Labeled
street

0 Residential Houses and apartment where people live 1,096 87
1 Business office Commercial office space 114 15
2 Commercial service Commercial retails, restaurants, lodging, and entertainments 161 29
3 Industrial Manufacturing, warehouse ,mining, etc. 176 37
4 Transportation stations Transportation facilities 24 6
5 Administrative Government, public service agencies 61 6
6 Educational Education and research 289 65
7 Medical Hospitals 28 12
8 Sport and cultural Public sports and training, cultural services 71 28
9 Park and greenspace Entertainments and environmental conservations 273 10

Note: There are 5,458 streets, 13,889 sampling points and 2,296 regions, and only labeled about 5.3% of the streets.
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cene embedding is generated as the model input for initialization.
n addition to Bert, the struct in Fig. 3 can also be compatible with
arious embedding methods, such as Doc2vec (Niu and Silva, 2021).
he experimental section will also compare the computational effects
f different embedding methods. Table 1 represents the results of the
treet embedding calculation with Bert as the semantic encoder (5458
treets, 768 dimensions).
Step 3: Labeling and spatial weights (road network topology)
The streetscape is rich in socio-economic information (Zhang et al.,

021c, 2018), and this paper assesses its ability to identify urban street
unctions. We use the EULUC-China dataset produced by Gong et al.
2020) to label the streets. The EULUC-China dataset identifies 27
ajor cities in China based on multiple data sources such as 10 m

atellite images, OpenStreetMap, night time lights, POIs, and Tencent
ocial Big Data, including five primary classification labels and 12 sec-
ndary classification labels, with an overall classification accuracy of
0%. The urban land use classification labels refer to the Chinese land-
se status classification standard (GB/T 21010-2017). Among those 12
econdary categories, road classification is not the type we focused, and
he study area does not contain Airport facilities type, we excluded such
rrelevant labels. As a result, we constructed a street function dataset
ontaining ten types of labels in Table 2, detailed information about
abels can be found in the literature (Gong et al., 2020).

The study area contains 13,889 streetscape sampling locations, and
ach has four images from different angles, 5,458 OSM roads, and 2,296
unctional regions with labels. To obtain the labels, we set a 25 m wide
uffer for the sampled locations (50 m can cover most of the city road
idth), which is spatially connected to the functional regions to label

he street view image. As elaborated in Step 1, we have constructed
he relationship between streetscape and street, therefore, here, we
imply count the streetscape labels that contain the most categories
s the street’s primary function. Some streets contain multiple labeled
treet views. For those streets, we select streets with more prominent
unctions as training data. As shown in Table 2. We labeled 190 streets,
ith an overall annotation rate of 5.3%.

Using the road network topology, we generated a spatial weight
atrix to generate the adjacent road relationship. Formally, we used
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an 𝑛 × 𝑛 (𝑛 is the number of streets) matrix 𝐴 to express it, if there is
n adjacent relationship between streets 𝑖 and 𝑗, then 𝑎𝑖,𝑗 is assigned to
, otherwise 𝑎𝑖,𝑗 is assigned to 0.

We used two methods to express the adjacent relationship. The first
s Queen contiguity spatial weight method (Suryowati et al., 2018).
f there is an intersection and overlap between streets, the technique
ill mark that the two streets are adjacent. The advantage is that it

an better reflect the existing road network, but the disadvantage is
hat it cannot handle streets without neighbors. The other is K-nearest
eighbors spatial weight method. It can calculate the 𝐾 nearest streets
nd mark them adjacent relationships. The advantage is that it avoids
angles roads. The disadvantage is that some non-intersecting streets
ill also be marked adjacent (Zhu et al., 2020).
Step 4: Build semi-supervised graph neural network for training
There are many graph models, and most graph models share their

ilter parameters over all locations in the graph. Those models are
raph Convolutional Networks (GCN) (Kipf and Welling, 2017; Zhang
t al., 2019a). GCNs have an excellent ability to extract graph features.
hus, suitable for semi-supervised learning tasks (only a small amount
f labels required), and it takes fewer iterations to converge (Bruna
t al., 2014; Kipf and Welling, 2017). We generated a city road graph
ccording to the adjacency matrix 𝐴 built-in Step 3. Every street was
egarded as a node, and our task was to label street functions. This
raph includes 𝑁 nodes, with 𝐷 dimensions, as the initial feature
atrix 𝑋. 𝐹 is the output dimension of the model, then the output is a
atrix 𝑍 of size 𝐷 × 𝐹 , and 𝐻 represents the intermediate state of the
odel. The GCN propagation rules are defined as follows:

(𝐻 (𝑙), 𝐴) = 𝜎
(

𝐴𝐻 (𝑙)𝑊 (𝑙)) (2)

here 𝑊 (𝑙) is a weight matrix for the 𝑙th network layer, 𝜎(⋅) is non-
inear activation function 𝑅𝑒𝐿𝑈 . There are still two limitations of the
ropagation rule at this point. The first is that 𝐴 is the adjacency matrix
f the graph, and the nodes’ features are not considered; the second is
hat the regularization of 𝐴 is also required. We define �̂� = 𝐴+ 𝐼 , 𝐼 as

the identity matrix. �̂� is the diagonal node degree matrix of �̂�. At this
point, the propagation rule of the GCNs is defined as:

𝑓 (𝐻 (𝑙), 𝐴) = 𝜎
(

�̂�− 1
2 �̂��̂�− 1

2 𝐻 (𝑙)𝑊 (𝑙)
)

(3)
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Fig. 5. General structure of the approach (Step 1 — Data process and Image Caption; Step 2 — Build graph neural network and train it; Step 3 — Extract triple and Generate
Knowledge Graph).
Source of the map: © OSM contributors.
The model training procedure is defined as follows: 1. perform
forward propagation of the model through the 𝑓 function. 2. Compute
the cross-entropy loss on the labels of known nodes.

𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑁
∑

𝑘=1

(

𝑝𝑘 × log 𝑞𝑘
)

(4)

𝑝 is the true label, 𝑞 is the predict label. 3. Back propagate the loss and
update each layer’s weight matrix 𝑊 .

The number of layers is the farthest distance a node feature can
reach. In a 1-layer GCN, each node can only get information from its
neighbors, while in a 2-layer GCN, each node can also get information
from its neighbors’ neighbors. More layers are not always better; over-
stacked layers will cause the model to lose the ability to extract local
features. (Xu et al., 2022c) believes that in the urban task, the model
accuracy decreases as the depth increases, and better accuracy can be
achieved by taking two neural network layers on average. Collecting
information is carried out independently, with all nodes performing
it at the same time (Yang et al., 2022a). At last, the features of
the graph are reduced from an initial 768 dimensions to a final ten
dimensions. After the cross-entropy loss function (Eq. (4)) training the
weight matrix 𝑊 , and the propagation rule Eq. (3), we output the
prediction result (matrix 𝑍, Eq. (5)) based on the softmax function,
i.e., the probability that each node belongs to the above 10 classes.

𝑍 = 𝑓 𝑋,𝐴 = 𝑠𝑜𝑓𝑡max
(

�̂�ReLU
(

�̂�𝑋𝑊 (0))𝑊 (1)) (5)
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( )
We used three semi-supervised graph neural networks to test the
performance, the first one is traditional GCN, which incorporates the
whole graph into the calculation, and the relationship between nodes is
equal weight. We designed two types of structures, the hidden channel
(computational units) is 64 and 32, 32 and 16, respectively. The second
one is graph attention network (GAT) (Veličković et al., 2017), which
is different from GCN, the relationships between nodes are unequal-
weighted, and these weight parameters are also the object of model
learning. The third one is GraphSage (Hamilton et al., 2017), which
does not calculate the whole graph. It only considers the influence of
surrounding nodes on the node, and the calculation is faster.

Step 5: Model prediction and accuracy evaluation
Based on the trained model in Step 4, we perform functional pre-

diction for unlabeled streets in study area. Since we introduce a semi-
supervised machine learning approach, we include only a fraction of
the labels of the data. We borrow the accuracy criterion from rec-
ommendation systems and measure the model accuracy by the 𝑃@𝐾
score (Ge et al., 2010), which calculates the proportion of the nearest
𝐾 regions that correctly contain the predicted labels. As such, 𝑃@𝐾
denotes when the predicted street label in the test data appears in the
𝑛𝑒𝑎𝑟𝑒𝑠𝑡 − 𝑘 true region label list (the EULUC-China dataset in Step 3 is
regarded as the actual value). 𝑁𝑢𝑚 denotes the number of test data,
and 𝑛𝑜𝑐 denotes the number of times this occurs, as follows:

𝑃@𝐾 =
𝑛𝑜𝑐 (6)

𝑁𝑢𝑚
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Table 3
The accuracy comparison of 12 models under different conditions.

Model Encoder Weight Graph Structure @1 @3 @5 @10 Number Time (s)

Model 1 Bert K-Nearest GCN1 0.344 0.568 0.654 0.758 8 39.672
Model 2 Bert K-Nearest GCN2 0.395 0.638 0.73 0.807 10 27.899
Model 3 Doc K-Nearest GCN1 0.327 0.544 0.632 0.738 9 24.516
Model 4 Doc K-Nearest GCN2 0.327 0.548 0.64 0.75 10 18.402
Model 5 Bert Queen Contiguity GCN1 0.382 0.637 0.736 0.824 7 32.374
Model 6 Bert Queen Contiguity GCN2 0.321 0.554 0.648 0.752 10 21.209
Model 7 Doc Queen Contiguity GCN1 0.335 0.564 0.657 0.75 8 24.298
Model 8 Doc Queen Contiguity GCN2 0.289 0.496 0.593 0.698 10 17.579
Model 9 Bert K-Nearest GAT 0.462 0.730 0.824 0.899 10 218.722
Model 10 Bert Queen Contiguity GAT 0.376 0.623 0.723 0.818 10 204.958
Model 11 Bert K-Nearest GraphSAGE 0.364 0.592 0.685 0.774 10 36.012
Model 12 Bert Queen Contiguity GraphSAGE 0.376 0.623 0.723 0.818 10 32.539

Note: GCN1,GCN2: the computational units is 64 and 32, 32 and 16 respectively.
A smaller 𝐾 value means a stricter evaluation criterion, and a
ore extensive 𝑃 value indicates a higher model accuracy and a closer
istribution to the actual condition. Since the study area contains more
han 5,000 streets and 2,000 regions, we use KD-Tree to speed up the
etrieval and calculation.

. Experiment

.1. Introduction to the study area and data pre-processing

As shown in Fig. 5, this research is divided into three main parts.
he first part is the cross-modal decoder of the streetscape images to
btain a highly semantic compressed description of the city scene; the
econd part is the semantic encoder of the decoder results together with
he OSM network topological relations and then input to the graph
etwork for semi-supervised learning; finally, we extract the knowledge
riple from the images to generate a street semantic knowledge graph
nd text summaries under each city function, which make the city not
nly can be ‘watched’ but also can be ‘read’.

Our study area is within the third ring of Wuhan in China, we
ollected 75,628 Tencent Street View images, which were sampled at a
imilar time to the launch of the EULUC-China product, while 64,750
ewly (collected in the July of 2022) Baidu Street View images were
sed to sense the recent urban construction in the study area. By cal-
ulating images from different times, we explore the urban functional
ransfer and the validity of the method from different data sources.

There are many diverse urban scenes and physical entities in the
tudy area, including 5,458 OSM roads and 18,907 streetscape sam-
ling locations. Based on the pre-trained visual language model men-
ioned in Fig. 4 Step 1, we perform cross-modal decoding of 75,628
treet scene images in the study area and generate the most relevant
ive scene descriptions for each. Consequently, we obtained a total of
78,140 sentences after about 72 h computation on a Tesla P100 GPU.

.2. Model training and accuracy comparison

We calculated the 25-meter buffer of OSM roads (street scenes are
ollected by sampling vehicles, and most urban roads are no more
han 50 meters wide), counted the streetscapes that fall within the
uffer zone as a representation of the street, built the 28,693 spatial
onnection between OSM and Street View. And then we use the EULUC
o label the streets. We continued the following research based on these
nformation.

We use Queen contiguity to calculate the spatial weight matrix, with
3,549 neighboring relationships. There are 5,458 OSM segments in the
tudy area, with an average of 5 relations per street, so we calculate
-Nearest (K=5) neighborhoods (27,290 neighboring relationships) as
nother set of spatial weights.

We conducted 12 sets of comparison experiments using different
odels as shown in Table 3. The main differences between the models
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re the different semantic encoder, the spatial weight matrix and the
graph feature extraction network, and each model is given a unique
name (Model1, Model2, etc.). We performed 200 rounds of epochs
for all 12 models to test their prediction accuracy, and the training
loss variations are shown in Fig. 6. We only discuss models where
the number of prediction categories is equal to 10, because these
models can maintain a better generalization ability. As can be observed,
using Bert as the encoder will achieve higher accuracy (Model 2 and
Model 4). Such high accuracy shows that Bert has a solid ability to
extract scene features and can reduce training loss. On the contrary,
the traditional method (Doc2vec) cannot reduce the loss even after 200
epochs. Take model 2 for example, when using the basic GCN structure
as a semi-supervised classifier, P@1=0.395, P@3=0.638, P@5=0.730,
and P@10=0.807. The result means that under the stricter criterion
(P@1), about 40% of the predicted labels of streets agree with the
EULUC; under the loose criterion (P@10), about 80% of the predicted
street labels are consistent with one or more labels of the ten nearest
parcels. Note that this does not mean that the accuracy of our model
is only 40%. Limited by the low quality of EULUC data and since one
street may have multiple functions, loose criterion (P@10) may be a
better choice of model assessment.

Mentioned in Step 2 of the method, GAT requires more parameters
for training (additional weight matrix), Model 9 and Model 10 are
the slowest but achieve the highest accuracy (P@1=0.462, P@3=0.730
P@5=0.824, P@10=0.899). This performance is quite satisfactory and
the model’s predictions are excellent. The performance proves that
Street View can detect urban street functions effectively, and introduc-
ing spatial topology improves the city’s interpretation level.

In addition, as shown in Fig. 6 that when GCN is used as a classifier
(Model 2, Model 3), the training loss is low at the beginning, indicating
that the model already has a good feature extraction capability without
training. Model 2, Model 6, Model 9, Model 11, and Model 12 have
the fastest converge speed. These models also have good generalization
ability and can accurately identify the ten functional categories. Using
the 5-Nearest (K=5) neighborhoods (dashed line, Model 5, Model 6) to
calculate the spatial weights makes the model more likely to converge
than Queen contiguity (solid line, Model 1, Model 2). The results in
Table 3 also show the lower accuracy of using Queen contiguity.

We use the T-distributed stochastic neighbor embedding (T-SNE)
dimensionality reduction method to visually check if the model can
learn the classification features well. As we can see in Fig. 7, the 768-
dimensional features of the street nodes are reduced to two dimensions,
and the labels of the model predictions are drawn. Fig. 7 can visually
verify the algorithm’s effectiveness to see whether the model can
learn similar embeddings of nodes belonging to the same category.
More specific, we can use T-SNE method for processing the feature
embedding (𝑙𝑒𝑛𝑔𝑡ℎ = 10, number of land use labels), which is the last
layer output of the neural network. At this time, the embedding has
been calculated by forward propagation of the trained neural network.
Besides, the predicted labels can also be obtained after the calculation

of the maximum value function (argmax).
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Fig. 6. Training loss curves of different models. Dashed lines indicate the use of 5-Nearest neighborhoods, and solid lines indicate the use of Queen contiguity.
In addition to the within-group comparisons performed in Table 3,
we also compared the results by the traditional machine learning
method Multilayer Perception (MLP), without considering the spatial
topology relationship. As shown in Fig. 7, Fig. 7(a) shows the predicted
feature vector dimensionality reduction results for model 9, Fig. 7(b),
(c) show the MLP feature vector dimensionality reduction results when
the neurons are 32 and 128, respectively, and the Bert is also used
as the semantic encoder. Fig. 7(d) shows the case when a two-layer
neural network is used. we can see the tradition method is much
less effective than our method, with some classes missing from the
predictions (only four categories). The advantage of our approach
over traditional methods is that our forecasts take into account not
only the current street environment but also the environment of the
adjacent streets. In addition, we also use the test set to independently
evaluate the performance of the model by calculating the number of
correctly predicted nodes (roads or streets) as the percentage of the
test set number. The models represented by Fig. 7(a, b, c, d) achieved
accuracies of 0.844, 0.445, 0.624 and 0.695, respectively, and our
method remains optimal after inter-group and intra-group comparisons.

The labels in Fig. 7 are based on the categories predicted by the
model, and the purpose of the figure is to visualize how different
models perform in separating different categories. Poorly generalized
models do not accurately identify all categories (predicted category
number less than 10). One reason is that some categories have less
training data, which makes it difficult for non-graphical models to fully
learn the features of each category. This is particularly challenging for
models that rely on large amounts of data, as there is not enough infor-
mation for them to learn. Lack of data can lead to poor generalization
of the model, which results in reduced accuracy for some categories.

This phenomenon can be observed in Fig. 7, where some models
fail to predict all categories correctly and certain categories are less
accurate than others. The same can be seen in Table 3.

It is worth noting that this is a common challenge in machine learn-
ing, especially when dealing with unbalanced datasets. The method
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proposed in this paper introduces graph neural networks to improve
this semi-supervised (not rich in training data) situation, which are able
to process continuous street images as input and fully take into account
the spatial dependencies between road networks, which makes it more
robust when dealing with less data and better generalizes to unseen
data.

In addition, the different classes in Fig. 7(b) show uneven spatial
distributions due to the nature of the T-SNE algorithm, which tries to
preserve pairwise distances between data points in high-dimensional
space, but in low-dimensional space, distances between points are not
guaranteed to be preserved. In addition, the uneven distribution may
also be due to an imbalance in the data, i.e., some classes are more
frequent than others, which may cause the algorithm to focus more on
these classes and create a denser cluster (Fig. 7 c), while other classes
may be underrepresented in the graph.

The confusion matrix of Model 9 on the training data is shown
in Table 4. Model 9 has an excellent fitting ability to identify all ten
urban function classes. However, almost every category has a portion
of streets misclassified as residential since the residential class is the
most common type in the city and is often mixed with other functions.
Therefore, the residential category has the highest percentage in 3,392
streets in the prediction results of Model 9 ( Table 4). In contrast,
the education, transportation, and administrative categories have the
lowest number, with less than 50 streets identified.

3.3. Model prediction and node attribute discussion

The Model 9 prediction results with the highest accuracy are shown
in Fig. 8. It can be seen that the prediction results are generated at
a fine scale, and the labels 0 to 9 are Residential, Business Office,
Commercial Service, Industrial, Transportation Station, Administration,
Education, Medical, Sports and Culture, Parks and Green Space. As
shown in Fig. 8 subgraph, streets are the ‘‘nerve endings’’ of the city.
Our model can identify actual and different functions despite the short
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Fig. 7. T-SNE dimensionality reduction results of our method (a) compared to traditional methods (b, c, d).
Table 4
The training confusion matrix of Model 9.

Types Res Bus Com Ind Tra Adm Edu Med Spo Par PredNum

Residential 85 0 1 0 0 0 0 1 0 0 3392
Business 5 9 1 0 0 0 0 0 0 0 158
Commercial 8 1 20 0 0 0 0 0 0 0 293
Industrial 13 0 1 21 0 0 1 0 1 0 412
Transportation 1 0 0 0 5 0 0 0 0 0 34
Administrative 2 0 0 0 0 4 0 0 0 0 48
Education 13 0 0 0 0 0 52 0 0 0 747
Medical 1 0 0 0 0 0 0 11 0 0 37
Sports/Culture 4 0 1 0 0 0 0 0 23 0 248
Parks 2 0 0 0 0 0 0 0 0 8 89
distance between two streets. Compared with using building footprint
or TAZ as the spatial unit, we can locate more rich results and are also
good at exploring multiple functions of the same region.

Fig. 9 (a–j) shows the 10 scenes predicted as categories 0–9 respec-
tively. Fig. 9(a) is identified as Type 0 (Residential), with the most
noticeable feature being tall residential buildings. Fig. 9(b) is identified
as Type 1 (Business Office), the most apparent feature is the office
building and a large number of parked cars. Fig. 9(c) is identified as
Type 2 (Commercial Service). As indicated in the figure, the street is
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busy, and there are superstores with red signs on both sides. Fig. 9(d)
is identified as Type 3 (Industrial), white vans can be seen parked
on the street in front of a factory. Fig. 9(e) is identified as Type 4
(Transportation Station). It can be seen from the figure that a bus
parking lot parked with many public buses. Fig. 9(f) is identified as
Type 5 (Administrative), and the identification results seem to be highly
correlated with Overpass. The condition may be because the model
does not learn the features of this class sufficiently (only six streets are
labeled in Table 2), and there may be errors in the labeled data. On the
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Fig. 8. Prediction results of SOTA model in the study area.Source of the road data: OpenStreetMap contributors. Source of the satellite imagery: USGS/NASA Landsat.
other hand, Type 5 street may be challenging to distinguish effectively
from other classes (e.g. Residential) in terms of visual features. Fig. 9(g)
is identified as Type 6 (Education). The main difference between it and
Fig. 9 (j, Type 9, Parks and Green Space) is that the Type 6 functional
street also includes buildings (dormitories, academic buildings) with
vehicles and pedestrians, while Fig. 9(j) includes only the natural
environment. Fig. 9(h) is identified as Type 7 (Medical). It is difficult
to observe whether it is correctly predicted at this location using those
four different angle images, which is also related to the fact that the
Type 7 also contains fewer visual features. Fig. 9(i) is identified as Type
8 (Sports and Culture), where we can see the presence of basketball
courts on both sides of the road, and the model keenly identifies this
phenomenon.

In addition, since the model has a solid ability to identify urban
open spaces (Fig. 9 (a–j)), it shows that the street view can not only
extract information about the streets but also can detect the functions
of the regions on the roadsides. In addition, this study demonstrates
that streetscape also has the potential to be used as an independent
data source to identify urban functions.

We mentioned that Fig. 9(f) illustrates the model misclassifies the
types of urban functions without distinctive visual features. This phe-
nomenon occurs because there are fewer differences in visual elements
between medical, administrative, and residential. We calculated the
mean of the embedding vector 𝐸𝑚𝑏𝑑_𝑇 𝑦𝑝𝑒𝑖 (Eq. (7)) for each city
function as an overall expression and calculated the cosine similarity
between different function categories (Fig. 10).

𝐸𝑚𝑏𝑑_𝑇 𝑦𝑝𝑒𝑖 =
∑𝑁𝑢𝑚𝑖

𝑗=1 𝐸𝑚𝑏𝑑_𝑆𝑡𝑟𝑒𝑒𝑡𝑗
𝑁𝑢𝑚𝑖

(7)

The semantic similarity between the different urban functional
classes is high, with most similarities above 0.8. It is difficult for tradi-
tional machine learning models to distinguish the different categories
without incorporating the dual spatial dependencies of knowledge and
topology (Fig. 7). The differences between Education, Industrial, and
Transportation categories are great. Park and Green Space, on the other
hand, is more similar to Education and Sports and Culture because
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these areas are often greener and share some characteristics (e.g., beau-
tiful surroundings, less traffic, and pedestrians). Residential differs
more from the Education and Park. As residential areas are common
functional areas in cities, they have some spatial co-occurrence with
most categories, with the slightest difference with the medical category
(correlation coefficient = 0.99). The Commercial and Park categories,
one being an area of heavy traffic and economic prosperity and the
other being a more sparsely populated area, have the most significant
difference, with a correlation coefficient of 0.81.

3.4. Urban renewal and spatial–temporal changes

We collected the Baidu Street View for the same study area in
July 2022, which reflects newer urban conditions. Tencent Street View
(which we used in the previous section), on the other hand, reflects
the older urban conditions and has been updated less frequently since
2014.

To capture more real urban spatial–temporal changes, we set Baidu
Street View’s sampling location and angle consistent with Tencent
Street View. Although Baidu Maps do not cover some places, we
collected 64,750 Baidu street images. We adopted the same processing
flow as shown in Fig. 3, using the parameter settings of the SOTA model
(Model 9). We obtained the embedded representation of each street
(Step 2) and the new urban function distribution (Step 5).

Based on the street embedding generated in Step 2 with different
data, we calculate the street renewal rate based on Eq. (8), which is
used to analyze the urban function evolution trend in recent years.

𝑅𝑒𝑛𝑒𝑤𝑎𝑙_𝑅𝑎𝑡𝑒 = 1−𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇 𝑒𝑛𝑐𝑒𝑛𝑡, 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝐵𝑎𝑖𝑑𝑢) (8)

In Fig. 11, most of the areas, especially the main roads in the city,
have changed less. Meanwhile, some areas have changed significantly
(renewal rate > 0.8). Furthermore, we plot the overall urban function
transfer matrix in Table 5.

The transfer matrix is a two-dimensional matrix calculated based
on the relationship between the changes in urban functions in different
phases of the same area. It includes the inter-conversion between
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Fig. 9. Randomly selected 10 locations predicted by the model 9 for categories 0–9 (each street has dozens of images, we randomly selected 4 angles of a location for illustration).
Source of the imagery: Tencent Street View.
Fig. 10. The cosine similarity between different function categories based on Eq. (7). The semantic mean embedding of each class is used as the class overall representation.
different land types and the overall change trend. Among all the 5,458
streets, the residential type has the largest decrease (1877 streets
reduced and 433 new streets added), reflecting the gradual demise of
163
urban villages in recent years supported by the china ‘shantytown ren-
ovation’ policy. The net increase in commercial and industrial streets
reflects the increasingly dynamic economy and industry development.
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Fig. 11. Urban renewal rate distribution based on Eq. (8).Source of the road network: © OSM contributors.
Table 5
The city function transfer matrix of Model 9.

Old
New Res Bus Com Ind Tra Adm Edu Med Spo Par Sum Decrease

Residential 1515 12 591 636 11 15 460 12 124 16 3392 1877
Business 66 22 12 27 5 1 21 0 1 3 158 136

Commercial 91 5 160 4 0 0 31 2 0 0 293 133
Industrial 59 0 3 278 2 0 49 0 19 2 412 134

Transportation 4 0 2 12 15 0 1 0 0 0 34 19
Administrative 6 0 8 15 4 13 2 0 0 0 48 35

Education 154 0 18 76 0 0 486 0 5 8 747 261
Medical 7 0 10 2 0 0 0 18 0 0 37 19

Sports/Culture 36 0 27 111 0 2 19 0 52 1 248 196
Park Green Space 10 1 2 16 0 0 30 0 1 29 89 60

Sum 1948 40 833 1177 37 31 1099 32 202 59 5458
Add 433 18 673 899 22 18 613 14 150 30 2870
Cultural and green spaces show a non-significant shrinkage. Wuhan
is the city with the largest number of lakes in China. The continued
anthropogenic activities and urbanization have led to serious degra-
dation of ecological wetlands, which is also consistent with other’s
studies (Wang et al., 2020).

3.5. Street semantic knowledge graph construction

The method Step 1 mentions that we generate scene descriptions
based on entity relations (s->r->o). We extract knowledge triples from
scene descriptions based on Spacy (Lai et al., 2022). This natural lan-
guage processing tool library can identify the part-of-speech of words
and the dependencies between words (Fang et al., 2021). For simplicity,
we extract entities from words with the lexicality ‘NOUN’ and relations
only from words with ‘VERB’ and ‘ADP’. For example, we can extract
the triples of, s->van,r->parked,o->side, s->van,r->parked,o->street,
etc from the sentence of ‘‘a white van parked on the side of a street’’.
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We perform similar calculations for all scenes and obtain 75,628
urban knowledge triples. Based on these knowledge triples, we generate
the semantic knowledge graph of all streets in Wuhan as shown in
Fig. 12. It includes 707 urban environment entities and 4,371 spatial
location relationships. The larger nodes indicate the higher frequency
of the entity, and the thickness of the edges indicates the strength of the
correlation relationship. After that, our graph-based community detec-
tion method (Louvain method) (Traag et al., 2019; Zhang et al., 2022b)
divides these entities and relationships into multiple communities, and
entities co-occur more frequently with entities inside the community
than with entities outside the community, which we do not explain
in-depth here.

Based on the street labels predicted by Model 9, we perform similar
processing for each class of urban functions to identify the differences
between them. Since we have predicted ten categories, we choose only
three here as examples, Commercial, Education, Park and green space,
containing 259 nodes with 710 edges, 400 nodes with 1,257 edges, and
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Fig. 12. Wuhan Street Semantic Knowledge Graph (nodes represent the environmental entities of the city, edges represent the spatial relationships between entities, and the colors
represent different ‘communities’). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Comparison of city function knowledge graph (a, b, c represent Commercial, Education, Park and green space respectively). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
209 nodes with 625 edges, respectively (Fig. 13, namely, city function
knowledge graph). More nodes indicate richer urban entities within this
function area, and more edges indicate stronger spatial relationships
between entities.
165
Buildings, stores, road, etc. appear frequently in Fig. 13(a), while
tree appears more frequently in Fig. 13(b,c). The frequency of sidewalk
and forest entities in Fig. 13(c) varies more considerably from other
categories. We can get above information from these sub-graphs clearly,
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demonstrating the effectiveness of the street view semantic-based ap-
proach in identifying urban functions.

In addition, we compute ‘summaries’ of each function description
set based on the method provided by HuggingFace open source commu-
nity (Wolf et al., 2020) to generate a ‘sentence’ that best represents it.
These sentences consist of the most important and most characteristic
scene descriptions. Function summary is shown below:

• Commercial: a street with a large building in the background;
a red car driving down a street next to tall buildings; a view of a
city street filled with tall buildings in the distance; a group of
cars that are sitting in the street; a view of a city street from
a distance. a city road filled with traffic surrounded by tall
buildings; a highway filled with lots of traffic and tall buildings.

• Education: a tall white building next to a forest; a tree in the
middle of the forest; a truck is driving down a city street near
tall buildings; a long line of cars driving down a city street; a sign
that is on the side of a building; a large building with a building
in the background; a large blue bench sitting in front of a city
skyline. A group of cars that are sitting in the street; a boat that
is sitting in the dirt ;

• Park and Green Space: an empty street with no cars on it; a
highway with cars driving down the road; a blue car parked in a
parking lot. a view of a bridge from across the water; an empty
highway with a sign; a long road with a long line of traffic lights
on it; a car is driving down a road next to a bridge; a train is
traveling over a bridge over a river; a small tree on the side of
the road; a group of cars that are sitting in the street.

As we can observe, the results of the city function ‘summary’ are
similar to the city function knowledge graph, but they are easier to
read, and the characteristic elements can be found more easily.

4. Conclusion and discussion

Urban geo-tagged proximate sensing images are generated contin-
uously in cities. For example, they include street view imagery and
photos shared on social media. They may be considered as twin map-
pings of the city’s operational state, constantly ‘refreshing’ for sensing
urban areas. Faced with a large volume of geo-tagged images, cap-
turing the rich semantic information and the spatio-temporal location
relationship is crucial to understanding and interpreting urban space.
In this paper, we proposed a purely visual scheme for the functional
perception of urban streets, which incorporates urban knowledge and
road network topology and can fuse multiple source images to generate
a holistic representation of a spatial unit. We also incorporate temporal
information and integrate historical street images to calculate urban
spatial–temporal changes, renewal rates, and urban function transition
matrix.

Our method has three significant novelties and advantages: fusing
multiple sources of urban proximate sensing images, supporting arbi-
trary scale spatial units, and being rich in socio-economic information.
The first advantage is that we can include the street view and other
proximate images in the computation and generate the semantic rep-
resentation (city caption), as long as the pictures can show the actual
conditions of the places, and even indoor images can be included. These
images can collectively form the overall image of the city (Filomena
et al., 2019), driving our understanding of the space deeper. The second
advantage is that our research unit is not only limited to the street
scale but also generalizable to other scales, even for a small sampling
point or a region. The different scales differ only in the length of the
semantic description text and the spatial topological relations. The third
advantage is that because the city is rich in human activity footprints,
the proximate images can penetrate deep into the city and provide
real-time feedback on the ‘people’, ‘vehicles’, and ‘things’, and the raw
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shape & color information. It will help to sense the socio-economic
environment comprehensively. In contrast, remote sensing images in
urban space are difficult to have a such high spatial and temporal
resolution.

This approach still has some limitations and elements that need
to be discussed. The primary drawback is the low scalability (3 days
for the Step 1 computations) because the cross-modal step (generating
caption) is computationally-intensive. In addition, the maximum length
of BERT is limited to 512 words. The generated spatial unit description
text can be long if the selected spatial unit is too large and with
excessive images. The model cannot get all the information thoroughly.
One can choose the text truncation or based on the introduced text
summarization method before processing. It is important to note that
this new geo-intelligent analysis method can be used not only for
urban function recognition but also for capturing and classifying socio-
economically rich and sensitive features, such as urban vibrancy, urban
village identification, built-up area recognition, etc. In addition, this
paper mainly discusses the street view images provided by commercial
and crowd-sourced services, which have more uniform spatial distri-
bution and longer update intervals. Understanding how to use the
social sensing (user-generated) (Liu et al., 2015) images which tend to
be unevenly spatially distributed and got posted much more rapidly.
Testing the applicability of our model will be the focus of our following
research.
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