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A B S T R A C T   

The aggregation of the same type of socio-economic activities in urban space generates urban functional zones, 
each of which has one function as the main (e.g., residential, educational or commercial), and is an important 
part of the city. With the development of deep learning technology in the field of remote sensing, the accuracy of 
land use decoding has been greatly improved. However, no finer remote sensing image could directly obtain 
economic and social information and it has a high revisit cycle (low temporal resolution), while urban flooding 
often lasts only a few hours. Cities contain a large amount of “social sensing” data that records human socio- 
economic activities, and GIS is a natural discipline with strong socio-economic ties. We propose a new Geo-
Semantic2vec algorithm for urban function recognition based on the latest advances in natural language pro-
cessing technology (BERT model), which utilizes the rich semantic information in urban POI data to portray 
urban functions. Taking the Wuhan flooding event in summer 2020 as an example, we identified 84.55% of the 
flooding locations in social media. We also use the new algorithm proposed in this paper to divide the main urban 
area of Wuhan into 8 types of urban functional zones (kappa coefficient is 0.615) and construct a “City Portrait” 
of flooding locations. This paper summarizes the progress of existing research on urban function identification 
using natural language processing techniques and proposes a better algorithm, which is of great value for urban 
flood location detection and risk assessment.   

1. Introduction 

The coupling effect of global climate change, sea level rise and ur-
banization has been accentuated, and hydro-meteorological disaster 
events are frequent (Chang et al., 2021). According to statistics, the 
economic losses caused by global floods account for more than 30% of 
the total losses from natural disasters. Floods are among the most 
devastating hazards on Earth, posing great threats to a large amount of 
population in the world (Huang, 2020; Wan and Fell, 2004). China is one 
of the most severely flooded regions in the world, and the Yangtze River 
basin is the third largest in the world, with a total basin area of 1.8 
million square kilometers, accounting for 18.8% of China’s land area. 
With the economic development of southern China, the economic losses 

caused by the flooding of the Yangtze River have become more and more 
serious. 2020 China’s Yangtze River basin suffered the most serious 
flooding since 1998, a total of 70,471,000 people were affected by the 
disaster, with direct economic losses of 214.31 billion RMB (about 
325.966 billion dollars).1 In this paper, we study the 2020 floods in 
Wuhan (the largest city in the middle reaches of the Yangtze River), and 
use a social sensing approach for location extraction and semantic 
computation of urban flooding events. 

There has been considerable research using specifically synthetic 
aperture radar (SAR) imagery, optical satellite imagery and a digital 
elevation model (DEM) (Rakwatin et al., 2013), monitoring and analysis 
of flooding events, such as analyzing the extent of damage and affected 
population (Sun et al., 2016), integrating remote sensing and deep 
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learning methods to extract the depth of standing water (Hultquist and 
Cervone, 2020; Syifa et al., 2019; Sharma et al., 2019), etc. However, 
traditional sensor networks provide data with insufficient spatial and 
temporal resolution, and satellite observations of the surface are easily 
obscured by clouds, resulting in longer access cycles (Schnebele et al., 
2014). At the same time, urban flooding and waterlogging is charac-
terized by a short impact time, which also places a high demand on the 
temporal resolution (density) of the data (Xu et al., 2021) . 

The social sensing approach represented by the crowd-sourced Vol-
unteered Geographic Information (VGI) data is an important comple-
ment to the physical sensing network (Schnebele and Cervone, 2013; 
Yan et al., 2020), focusing on the socio-economic domain (Cowie et al., 
2018), plays an equally important role in natural disaster monitoring 
and early warning, and is a fast,low-cost,and efficient survey monitoring 
method (Zou et al., 2018). With the spread of 5G and the extensive 
coverage of smart devices, these changes have greatly enriched the 
means and range of data for social sensing, where everyone is a “sensor” 
providing real-time feedback on real-space events and entities (Liu et al., 
2015). Sensor networks are highly accurate and fixed in format, with a 
high density of available data (Zhang et al., 2021). Compared to it, social 
sensing data has the advantages of massive data volume, wide coverage 
area, high observation density and can record human behavior patterns 
in detail (Forrest et al., 2020). 

However, the huge amount of observed data obtained by social 
sensing methods has a serious noise problem. It has diverse sources, 
inconsistent structures and low density of valid information. The in-
formation describing natural disasters exists mostly in the form of tex-
tual descriptions and a large amount of valuable information is 
submerged in irrelevant messages. This irregular information undoubt-
edly brings some impact on scientific research, and it is time-consuming 
and not time-sensitive to filter it manually. It is a popular and chal-
lenging research direction to extract disaster information from social 
sensing data by using artificial intelligence technologies. With the 
development of natural language processing technology (NLP), the 
extraction of disaster information from social sensing data has been 
greatly advanced (Kaufhold et al., 2020). In recent years, many scholars 
have conducted research on this issue, extracting and analyzing social 
media information for situational awareness and disaster assessment 
(Atefeh and Khreich, 2015; Wang et al., 2020); attempting to quantify 
and regularize social sensing data, constructing knowledge service sys-
tems (de Bruijn et al., 2019), improve disaster response capability 
(Barker and Macleod, 2019; Wang and Ye, 2018). It has been heavily 
applied in various phases of disaster preparedness, response and re-
covery (Zahra et al., 2020), such as wildfire hazards (Wang et al., 2016), 
earthquake (Robinson et al., 2013), Hurricane Harvey (Yang et al., 
2019; Zou et al., 2019) and Hurricane Sandy (Wang et al., 2019). 

In the face of flooding events, the temporal resolution of physical 
sensing network represented by remote sensing satellites is too low. 
After searching open source satellite data from GF and ZY series, 
LANDSAT, MODIS and Sentinel, we found no high quality remote 
sensing imagery in Wuhan in early July when the flooding was at its 
worst in 2020. In addition, the land use interpretation results of remote 
sensing images do not have economic and social information. These are 
the two main problems that we set out to solve in this paper. 

Our main contributions are twofold: 
From an application perspective, this paper proposes a social sensing 

approach for flooding location identification, distinguishing water-
logged locations from common locations based on semantic information 
using the BERT-Bilstm-CRF model. 

From a methodological perspective, this paper contributes a new 
GeoSemantic2vec algorithm that can learn the spatial context relation-
ships from POI data to define urban functional zones (the areas assigned 
to different social and economic activities (Yuan et al., 2014)) through 
economic and social spatial semantics. 

The article is organized as follows. Section 2 introduces the work 
related to this paper, and Section 3 presents the research methodology, 

which is divided into two parts: flood area identification and urban 
function extraction. Sections 4 and 5 are our experimental sections, 
which introduce our experimental background, flood identification and 
urban function calculation based on the new method, respectively. The 
urban function calculation includes the accuracy comparison with the 
baseline algorithm and identifying urban functions in flooded locations. 
The last Section concludes the article. 

2. Related works 

Remote sensing images are often used in urban land use studies. The 
advantage of remote sensing technology is that it covers a large area and 
can still obtain more accurate land use information in many inaccessible 
areas, but remote sensing methods do not directly reflect socio-economic 
information. In addition, remote sensing images have the same resolu-
tion in both suburban and urban areas, but urban areas contain a large 
amount of “social sensing” data. The most common data source for land 
use related research using social sensing methods is point of interest 
(POI) data, which is a kind of mapping of geographic entities. POI in-
formation in cities is much richer than remote sensing images (we have 
collected more than 500,000 POI records within the third ring road of 
Wuhan city) and has great research potential. 

There have been a considerable number of studies using social 
sensing data such as cab trajectories(Zhang et al., 2016; Wang et al., 
2018), cell phone signaling data(Yuan et al., 2012), and bicycle sharing 
data(Zhang et al., 2018) for studies related to urban functional zoning or 
land use. Most of them use geospatial analysis methods for trajectory 
similarity matching or Origin Destination analysis. The use of NLP al-
gorithms to extract potential geospatial features based on POI, social 
media and other related data, and then identify urban functional zoning 
(Sun et al., 2016), is another research direction. The earliest and most 
commonly used mining algorithms are the Term Frequency-Inverse 
Document Frequency (TF-IDF) method (Aizawa, 2003), Latent Dirich-
let Allocation (LDA) method (Blei et al., 2003) and Probabilistic Latent 
Semantic Analysis (pLSA) (Bosch et al., 2006) method. These unsuper-
vised clustering methods are not restricted by the text form and auto-
matically find the number of topics (urban functional zones). They could 
generate topic vectors and the distance between vectors indicates se-
mantic similarity (Gao et al., 2017). With the introduction of the 
Word2vec model by Google, this word embedding method has been well 
received and widely used in urban feature recognition (Yao et al., 2017; 
Liu et al., 2020; Zhai et al., 2019). Improved algorithms based on 
Word2vec represented by Place2vec could consider the (spatial) context 
and embed the text into tighter vectors (Zhai et al., 2019). 

However, these methods have some drawbacks, as words (POI) and 
vectors are in a one-to-one relationship, it is difficult to solve the 
problem of multiple meanings of words (one POI may assume multiple 
functions, and different POIs may belong to the same function such as 
parks and green spaces, restaurants and eateries). The traditional 
method represented by LDA is actually a probabilistic model and does 
not contain semantic information (Angelov, 2020). Besides, Word2vec 
algorithm is a static approach, although general, but can not do dynamic 
optimization for specific tasks. With the advancement of natural lan-
guage processing technology, transformer has successfully replaced the 
traditional Recurrent Neural Network (RNN) (LSTM/GRU structure) 
network (Tay et al., 2020). In this paper, we propose a new Geo-
Semantic2vec algorithm based on the latest Bidirectional Encoder 
Representation from Transformers (BERT) model. 

Unlike the spatial random sampling method (Gao et al., 2017) and 
the traffic analysis zone (TAZ) delineation method (Yao et al., 2017), we 
perform a uniform spatial sampling of the city (Intensive point coverage) 
to obtain as much fine-scale spatial semantic information as possible. 
Compared with the Place2vec method, the algorithm takes the BERT 
model as input, and this pre-trained model can better take into account 
the spatial contextual information, even if the same POI will return 
different vector embedding results under different spatial contextual 
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relationships. In addition, compared with the k-means clustering 
method of the Place2vec algorithm, this paper adopts the density-based 
Hierarchical Density-Based Spatial Clustering of Applications with Noise 
(HDBSCAN) method, which can effectively eliminate the influence of 
outliers (Yan et al., 2017; Campello et al., 2013). We use the Uniform 
Manifold Approximation and Projection (UMAP) algorithm (McInnes 
et al., 2018) to reduce the dimensionality of the semantic vector. The 
algorithm proposed in this paper is interpretable and could avoid 
complicated hyperparameter adjustment (Lu et al., 2011). 

This paper belongs to the study of urban flood risk analysis, which is 
different from the traditional use of flood-related geographical factors 
(elevation, slope, curvature, distance to river and land use, etc.) to 
determine flood risk (Löwe et al., 2021; Herbert et al., 2021; Pham et al., 
2021; Lei et al., 2021). We perform a data-driven social sensing of urban 
flooding events and the assessment of their riskiness. It enriches the 
existing means of flood data collection. The advantage of our approach 
is that it is based on crowdsourced data extraction of flood locations, but 
also considers the socio-economic attributes of flood locations, and is 
based on a data-driven study of the socio-economic risk of floods to 
humans (Romascanu et al., 2020; Wang et al., 2018). 

3. Research methods 

As shown in Fig. 1, this paper is organized by two main parts, firstly 
named entity identification (NER) method to extract the location of 
waterlogging from social media (Weibo, ’Chinese Twitter’) data. Sec-
ondly, we propose the GeoSemantic2vec algorithm, which extracts se-
mantic information and clusters different functional areas of the city by 
spatially sampling the study area and computing the POI spatial context 

of the sampled points using the BERT model. Then, the semantic 
computing and socio-economic mining are performed on the location of 
waterlogging. 

Our method could be applied to rapid mapping of flooding disasters, 
which is faster compared to traditional methods, such as remote sensing 
and manual census. It fully considers the coupling relationship between 
people and the environment, and the complex impact of urban flooding 
on the social environment. 

3.1. BERT introduction and named entity identification 

BERT is a novel language model based on Transformer architecture 
(Devlin et al., 2018), which is mainly divided into two steps: pre-training 
and fine-tune. Compared with traditional neural network novel lan-
guage models, BERT has achieved best results in several natural lan-
guage processing tasks such as text classification, text similarity, 
intelligent question and answer, text labeling, and named entity recog-
nition. The MLM (Mask Language Model) strategy is used to capture 
semantic connotations during BERT pre-training. The specific approach 
is: model randomly masks 15% of the words in the corpus (80% of 
training time), randomly replaces the word with another word 10% of 
the time, and keeps the original word unchanged for the remaining 10% 
of the time. BERT uses this noise-injection training approach to improve 
the model’s ability to acquire semantic information, while also making it 
difficult to acquire the full amount of information, thus ensuring its 
excellent generalization ability. However, the cost of pre-training is very 
expensive. In this paper, we use the pre-trained BERT model based on 
the Chinese wiki released by Google (Number of hidden layers in the 
Transformer encoder = 12, Size of the encoder layers and the pooler 

Fig. 1. Technology roadmap for this article.  
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Fig. 2. BERT-LSTM-CRF NER model structure.  
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layer = 768, Number of attention heads for each attention layer in the 
Transformer encoder = 12, total parameters = 110 M, including dictio-
nary of 7,322 Chinese characters) 2, fine-tuning the model to identify 
flooding locations. Research has been conducted using BERT to extract 
location from social media data (NER task) (Zhang et al., 2020; Li et al., 
2020), the principle of which is shown in Fig. 2. The basic idea is to 
transform the sequence annotation task (recognizing words in text that 
describe an address) into a classification task (tagging each word 
appropriately) at which machine learning excels. 

The model inputs are sentences, and BERT encodes each word(Xi) 
and outputs a word vector. The word vectors are input to the Bi- 
directional Long Short-Term Memory (Bi-LSTM) layer for learning, 
which samples the sentences separately according to the inverse order 
and outputs the probability distribution of the words belonging to each 
type of entity. This distribution is fed to the Conditional Random Field 
(CRF) layer for judgment (Tseng et al., 2005) to assign appropriate la-
bels (Yi) to the words. 

3.2. GeoSemantic2vec algorithm 

Based on BERT model and urban POI data, we propose a Geo-

Semantic2vec algorithm for extracting urban functional areas from POI 
semantic information and location information. Inspiring by text clas-
sification tasks in natural language processing research, we perform 
uniform sampling in the study area to obtain the Sampling Location, 
generate the buffer of the Sampling Location at a certain distance 
(Sampling distance), and arrange the POIs (Word) according to the 
distance from the Sampling Location. The arrangement of POI is the 
expression of Sampling Location (document). As shown in Fig. 3, we 
consider that the closer the distance to the Sampling Location, the 
stronger the effect of the POI on the Sampling Location property, we use 
the enhancement parameter (Distance Effects Attenuation) to carry out 
the weighting, and the formula of this factor is: 

αlj
distance = ⌈

1 +

∑|L|

k=1
Plk

|L|

1 + dβ
(
li, lj

) ⌉ (1) 

Among them: The context sampling location is lj; |L| represents the 
total number of POIs, dβ

(
li, lj

)
represents the distance between the POI li 

and the sampling location lj. β represents an inverse distance factor (set 
to 1 in this paper). The numerator can be regarded as a smoothing 
constant for a given POI dataset. Plk represents the total POI count 
associated with the sampling location lj. As we explained, in this paper, 
we let Plk = 1; therefore, the numerator is a constant (equal to 2) for all 

Fig. 3. Algorithm flow and distance enhancement schematic.  

Fig. 4. Schematic diagram of model fine-tuning. (Left side represents NER task, extracts the location of flood from socially-sensing data. Right side represents 
classification architecture, generats vectorised representations of areas.). 

2 https://github.com/google-research/Bert 
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POIs. αlj
distance is rounding up to an integer. Our enhancement method is 

also simple. If the enhancement parameter α value of POIA is 2, then 
POIA will appear twice in the list of sampling location lj expressions. 

After the weighting process, we use the list consisting of POIs as a 
representation of sampling location. We used the BERT model to 
generate this expression into a Sentence Vector with 1,976 sampling 

locations in the study area, generating a sentence vector of 768 di-
mensions (Size of the encoder layers and the pooler layer). Considering 
that the total number of POI types is not as rich as that total number of 
real-world words, we use UMAP to reduce the sentence vector to 70 
dimensions (Zhai et al., 2019). Then, we use the HDBSCAN algorithm 
(McInnes et al., 2017) to cluster the reduced dimensional Sentence 
Vector and extract the urban themes of Sampling Location. 

We provide the pseudo-code of the algorithm with the flowchart 

Algorithm 1: GeoSenmantic2vec Algorithm 
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here3. 
In fact the two applications mentioned in this paper (flood address 

identification and urban function study) correspond to BERT’s annota-
tion tasks (Fig. 4A) Tagging tasks and sentence classification tasks 
(Fig. 4B). For example in Fig. 4B, the representation of a Sampling 
Location (Input POI List) is [Chinese Restaurant, Zoo, Bank of China, 
Wal-Mart, Train Station]. BERT will prefix the sentence (POI List) with 
[CLS (Classifier)] to generate a new POI List ([CLS,Chinese Restaurant, 
Zoo, Bank of China, Wal-Mart, Train Station]) for the next step of model 
training. 

As shown in Fig. 4B, we embed the Input POI List, including POI 
word embedding, sampling location information embedding, and dis-
tance embedding. The POI word embedding represents the POI name, 
the sample location embedding represents the sample location and the 
distance embedding represents the spatial relationship between POI and 
sample location. The composite input is “fine-tuned” by the BERT 

model, and the output results are then used for downstream tasks. As 
shown in Fig. 4A, our sequence annotation task uses a single-word BERT 
encoding result (Vector), which is input to Bilstm-CRF for flood address 
extraction, while our urban functional partitioning only requires the 
encoding result of [CLS] (a 768-dimensional Vector) for the downstream 
task. 

4. Identification of waterlogged locations from social sensing 
data 

4.1. Study area and study time 

Wuhan is the largest city in the middle reaches of the Yangtze River, 
with more than 100 urban lakes, and is known as the “Water City”. In the 
context of rapid urbanization, Wuhan City faces serious urban flood 
control pressure during the rainy season every year (Zhou et al., 2021). 
Fig. 5 shows the water level changes at Wuhan Hankou station from 
January to November 2020. The water level at Hankou station reaches 
preventing water level on June 30, 2020, warning water level on July 7, 

and the water level reaches its peak on July 12. 
Similarly, according to National Oceanic and Atmospheric Admin-

istration(NOAA data), as shown in Fig. 6, the precipitation in Wuhan 
reached 71.5 mm/day on July 5 and 111.55 mm/day on July 19, 2020, 
which means that there is a short period of heavy precipitation and the 
flood season overlaps with the rainy season, bringing a high risk of 
flooding in the main city. We searched and obtained all weibos (Similar 
to tweets in Twitter) about waterlogging in Wuhan after 2013. As shown 
in the attached figure, there are more weibos in summer and spring, we 
selected the weibos related to urban flooding in July and August 2020 as 
our data source to extract the location of waterlogging. 

4.2. BERT training process 

As mentioned in Sec 4.1, we obtained weibos related to flooding and 
waterlogging in Wuhan City in July and August 2020, with a total data 
of about 100,000 words. Social media does not fully cover everyone, and 
people react and express themselves differently to flooding events. 
However, if the amount of data is large enough, suitable algorithms can 
extract reliable information from the big data containing noise (Wang 
et al., 2015; Chen et al., 2021). We use BIO ternary annotation pattern 
(B-begin, I-inside, O-outside; B, i.e. Begin, means start, I, i.e. 

Fig. 5. Water level trends at Hankou Station on the Yangtze River.  

Fig. 6. Precipitation trends and the number of waterlogging notifications in Wuhan.  

3 Step1: Spatially sample the study area, and all POIs in the sampling location 
buffer are considered as a “document”. Step2: Each POI in the buffer is 
considered as a “word” and arranged according to the spatial relationship be-
tween the POIs and the sampling location, and the distance enhancement factor 
is used to strengthen this relationship. We get a matrix of the number of sam-
pling locations multiplied by 768 (the number of BERT hidden layers). Step3: 
We reduce the dimensionality of the matrix obtained by Step2, cluster the re-
sults, and label each sampling position with the clustering results. 

Y. Zhang et al.                                                                                                                                                                                                                                   
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Intermediate, means middle, O, i.e. Other, means other, is used to mark 
irrelevant characters (Yang et al., 2017))4 to annotate entities word by 
word. For example, a weibo: “serious flooding occurred on Luoyu Road, 
water depth of 20 mm, good road access on Guangba Road, no water-
logging occurred”. Here although there are two locations at the same 
time, however Guangba Road is obviously not the location we need, we 
label it verbatim as O O and Luoyu Road as B-Area-begin,I-Area-begin. 
In addition to waterlogging area, we also labeled Time, Rain (precipi-
tation level), Station (monitoring stations), Depart (response de-
partments), Measure (anti-disaster measures), Stain (waterlogging 
specifics), Water (Yangtze River level description), and Level (risk level 
description). Fig. 7 shows our labeling process. 

The experimental environment is Centos operating system, Tesla 
V100 GPU is used for training, and the model is built by Tensorflow.5 

The experimental parameters are set as follows: input dimension (max- 
seq-length) is 128, train-batch-size is 32, and learning-rate is 2e-5.20% 
of the data were randomly selected as the test set and the rest of the data 
were used as the training set. The Precision, Recall, and summation 
mean F1 − score are used as the evaluation criteria of model 

performance, which is calculated as follows. 

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)  

where true positive (TP) indicates the case of correctly classifying i class 
as i class and true negative (TN) indicates the case of predicting j class as 
j class, both of which are correct predictions. False positives (FP) are the 
predictions that mark j class as i class, and false negatives (FN) are the 
cases that predict i class as j class. 

Fig. 7. Schematic of entity annotation process (this paper uses BIO annotation mode, using Yedda tool for annotation.).  

Table 1 
Model accuracy evaluation results (we treat the waterlogging location descrip-
tion differently from the irrelevant location description to improve the accuracy 
of flooding address identification).  

Fig. 8. Waterlogging locations in Wuhan City in summer 2020 (190 water-
logging locations, 2,989 related Weibos). 

4 https://github.com/jiesutd/YEDDA  
5 https://tensorflow.google.cn. 
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Table 1 shows the evaluation results of our model, Number repre-
sents the number of entities in the test set. Among the eight recognition 
targets, the model has better recognition ability for the location of 
waterlogging. The Precision of it is 0.819, Recall is 0.846, and the 
summed mean F1 − score is 83.2, which means that our model has a good 
ability to accurately identify the location of inundation from a large 
number of locations. 

4.3. Waterlogging location and geocoding 

We manually checked the waterlogging addresses extracted by the 
NER model and collected 2,989 Weibos related to waterlogging in 
Wuhan. These Weibos contained 190 waterlogging locations (Area). We 

geocoded these locations to obtain detailed latitude and longitude co-
ordinates. As shown in Fig. 8, the waterlogging locations are almost all 
concentrated in the urban area, and the waterlogging phenomenon is 
more intensive in the third ring road (101 waterlogging locations and 
1,774 related Weibos). 

We selected the area within the third ring road of Wuhan city as the 
main study area. The water hazard risk is measured by the number of 
waterlogging (Number of Weibo notifications), as shown in Fig. 9. The 
water hazard risk is presented on two scales, with Fig. 9A indicating the 
road sections prone to waterlogging and Fig. 9B indicating the streets 
with a high number of waterlogging phenomena. This assessment 
method does not take into account the road class as well as the socio- 
economic attributes of the waterlogging location (Darabi et al., 2019). 

Fig. 9. Risk of waterlogging in Wuhan (Figure A: Road Scale, Figure B: Neighborhood Scale).  

Table 2 
Details of the POI data of the main city of Wuhan used in this paper.  
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In the next section, we will further explore the geo-semantic information 
of waterlogging locations using the GeoSemantic2vec algorithm. 

5. Semantic calculation of waterlogged locations based on the 
GeoSemantic2vec algorithm 

5.1. City POI dataset 

The POI data used in the paper comes from Baidu Maps, which is the 
largest online map provider in China.6 Our study area is the main urban 
area within the third ring road of Wuhan city, with about 500,634 POI 
data. POI data are classified into 22 basetypes (Caf/Tea, RoadFac, Adr/ 
loc, TourAtr, ShopMal, TrabsFac, Bank/Fina, Sci/Edu, MotServ, Car-
Serv, CarRepa, CarSale, Residen, LivServ, IndoFac, Spr/Rec, ComuServ, 
Hospital, Gov/Pub, Factory), 220 SUBTYPE, and a more detailed 647 
CATEGORY by attributes. We show the distribution of POIs according to 
basetype classification criteria in Table 2. 

5.2. Urban functional zone identification 

We use a 500-by-500 grid to divide the land within the 3rd Ring Road 
of Wuhan into 1,976 regions and set a buffer radius of 500 meters for the 
centroid of each region (the resolution can be higher if the computing 
power allows). The buffers of adjacent centroids are overlapped, which 
allows the model to learn information about the surrounding sampling 
areas. Based on the distance from the centroid, the POIs in the buffer are 
ranked and a list of POIs is obtained as an expression of the region (here 
we take the value of enhancement parameter as 1). Using the Geo-
Semantic2vec algorithm mentioned earlier, this POI list is sampled and 
learned to learn the spatial interleaving relationships and contextual 
semantic information of all POIs in the buffer. It uses the Distance 

Embeddings layer of the neural network to learn the spatial location 
relationships, and again learns the semantic information of different 
POIs through the POI Embeddings layer. Even for POIs with the same 
name, but with different spatial contextual relationships, their embed-
dings generate different vectors. This means that “phrases” are formed 
based on common POI pairings, e.g., Kentucky Fried Chicken(KFC) often 
appears with retail stores, while retail stores often appear with resi-
dential areas, and POIs with the same name (KFC) have different 
meanings in different pairings (KFC-retail store, KFC-residential area). 
We use HDBSCAN algorithm to cluster the vector of each sampling 
location to get the label (functional partition). 

According to the clustering results, we divided the 1,976 areas into 8 
categories in Fig. 10, namely Water (158, mainly composed of water 
area), Scenic Area (123, mainly taking on the functions of parks, water- 
friendly wetlands, etc.), University (162, mainly composed of univer-
sities and colleges), Company (114, mainly taking on the functions of 
industrial parks and factories), Residence (242, mainly for residential 
land use), Public Service (217, mainly for urban public services), Busi-
ness (112, mainly for commercial and financial functions), and Other 
(848, it has no definite relationship). 

In addition to that, we also take the vector mean of each functional 
zone to represent this functional zone and calculate the similarity of 
different urban functional zones. Table 3 shows the calculation results of 
Pearson correlation coefficients for different functional zones. 

The functional zone Other seems to be a multifunctional mixture, 
with similar vector expressions to the rest of the types of functional 
zones except Water. Water functional zone is very different from the rest 
of the functional zones, due to the low density of POI and the single type 
of this functional area. Scenic area has a similarity to University (0.818), 
which may be the fact that universities have better forest cover and some 
historic universities also assume a certain tourism function. University 
has a high similarity with many types, with the largest difference with 
Residence (0.701). Company is significantly different from Scenic, 
Residence and Business, but has a closer resemblance to Public Serv. 
Residence is strongly correlated with Business (0.935), indicating that 
mature neighborhoods with more residents tend to have well- 
established commercial services. Public Serv has the strongest correla-
tion with Residence (0.912), indicating that public services tend to be 
built in more residential areas. The correlation between Business and 
Company is the weakest (0.680), indicating that there is spatial het-
erogeneity between these two types of urban functional areas. Overall, 
the city is a spatially coherent and multi-functional mixed complex 
system, and there is spatial heterogeneity as well as similarity(Calafiore 
et al., 2021). 

5.3. Identification and pattern classification 

In the previous section we divided the study area into 8 functional 
zones, and in this section we evaluate the results of this division. We 
calculate the distribution of POI in different urban functional zones by 
the following two indicators. Indicator 1 is POI Density (PD), which aims 
to reveal the density of various types of POI in different functional zones, 

Fig. 10. Calculated city function classification results.  

Table 3 
Vector similarity of each urban functional zone.   

Other Water Scenic University Company Residence Public serv Business Number 

Other 1 − 0.53634 0.801053 0.838529 0.770569 0.908913 0.965172 0.93716 848 
Water − 0.53634 1 − 0.61636 − 0.66308 − 0.7282 − 0.63454 − 0.67693 − 0.62969 158 
Scenic 0.801053 − 0.61636 1 0.818121 0.691984 0.678163 0.750295 0.841683 123 

University 0.838529 − 0.66308 0.818121 1 0.715146 0.701391 0.81686 0.779206 162 
Company 0.770569 − 0.7282 0.691984 0.715146 1 0.693495 0.825015 0.68022 114 
Residence 0.908913 − 0.63454 0.678163 0.701391 0.693495 1 0.911671 0.934959 242 
Public serv 0.965172 − 0.67693 0.750295 0.81686 0.825015 0.911671 1 0.909329 217 
Business 0.93716 − 0.62969 0.841683 0.779206 0.68022 0.934959 0.909329 1 112  

6 map.baidu.com. 
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and its calculation formula is as follows: 

PDq
i = Nq

i /Ai (5) 

PDq
i represents the density of class q POIs in functional area i,Nq

i 
represents the number of class q POIs in functional area i, and Ai rep-
resents the total area of functional area i. As shown in Table 2, the 
number of different kinds of POIs varies. Some POIs are common and 
some POIs are rarer, which can lead to biased estimation results of PD 
metrics. We mimic the TFIDF algorithm in natural language processing 
and use the indicator2 (the enrichment factor, EF) to overcome this bias, 
which is calculated as follows: 

EFq
i = (Nq

i /Ni )/(Nq/N ) (6)  

where EFq
i represents the EF value of the class q POI in functional area i, 

represents the total number of POIs in functional area i,Nq represents 

the total number of class q POIs. represents the total number of all POIs, 
which is 500,634 in this paper. 

In Table 4, we calculate the PD and EF values for each urban func-
tional zone. The FScenic functional area has the highest POI density of 
TourAtr type (PD = 42.263, EF = 37.163), which is very distinctive. We 
classify these regions as Scenic Area type, which take on the function of 
recreation in the city. Similarly, the EF value of FUniversity functional area 
Sci/Edu type POI is the highest, along with the high density of Residen 
type, LivServ type, TransServ type and Caf/Tea type POI. A college or 
university is a mixture of multiple types of POIs, and the model extracts 
this particular mixed structure. In addition to having various living 
service facilities provided to students and faculty members, education is 
the most important function undertaken by colleges and universities. 

The FCompany functional area is also easy to identify, and he has the 
highest EF value of Factory type POI. The FResidence functional area, as the 

Fig. 11. Classification confusion matrix of GeoSemantic2vec algorithm (kappa 
coefficient 0.615). 

Fig. 12. Accuracy comparison of Word2vec, TFIDF, LDA and GeoSemantic2vec 
algorithms (after testing, our method Precision is 0.712, recall is 0.676, F1 score 
is 0.683). 

Table 4 
Calculation results of PD and EF indicators for each functional zone.  

Note: PD:POI Density(/km2);EF:Enrichment Factor. 
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most relevant functional area for residents, is rich in all kinds of living 
service facilities, and the POI distribution is similar to that of the FBusiness 
functional area. The difference is that the FBusiness functional area has 
more IndoFac type POIs and less Adr/Loc type POIs. The BERT model 
could extract the semantic information of POI names. Even if the density 
of POIs is the same, the difference of semantic information will make the 
vector embedding representation of the two types of functional areas 
different. The FPublicServ functional area has the highest EF value of Gov/ 
Pub type POI, and the vast majority of public service institutions are 
distributed here. Finally, the FOther functional zone does not show sig-
nificant spatial aggregation characteristics at the spatial scale used in the 
paper, and the urban functions are more ambiguous. 

5.4. Algorithm accuracy comparison and effectiveness evaluation 

We use the Word2vec method, TFIDF method and LDA method 
mentioned in the previous paper as the comparison baseline for feature 
extraction, and use the k-means algorithm to cluster the feature 
extraction results to evaluate the accuracy of our algorithm. We used a 
crowdsourcing approach and invited a dozen of master’s students with a 

background in GIS or urban planning to judge the type of urban func-
tions at the sampled locations. After eliminating locations where it was 
difficult to accurately determine the function types, we kept 1,012 
judgment results and verified them using precision, recall and F1 score 
commonly used in machine learning. 

From the confusion matrix (Fig. 11), we can see that there are some 
particularly confusing locations such as Water and Scenic, Residence, 
PublicServ and Business, which may be due to the fact that spatially 
uniform sampling breaks up functional areas, and one area will contain 
multiple functions with more information on special types of POI fea-
tures. In addition, even though we define the attributes of functional 
areas, there will still be bias in the perception of functional areas by 
different volunteers. As shown in Fig. 12, our algorithm achieved a test 
score of 0.712 for Precision, 0.676 for Recall, and 0.683 for F1, which is 
about 15% improvement compared to the baseline algorithm. 

5.5. Socio-economic information mining of waterlogging locations 

We plot the road class, the city function, the number of peripheral 
POIs, and the number of times the water accumulates. As shown in 

0.0019

0.18

Anova, p = 0.081

0

1000

2000

3000

Bus Comp Other Pub 
Serv

Res Scenic Un Wat

N
um

be
r o

f s
ur

ro
un

di
ng

 P
O

Is

0.19

0.17

Anova, p = 0.41

0

50

100

150

200

N
um

be
r o

f w
at

er
 d

am
ag

e

City Functions

N
um

be
r o

f w
at

er
 d

am
ag

e

Number of surrounding POIs

Bus Comp Other Pub 
Serv

Res Scenic Un Wat

Urban Bypass

Urban Secondary Road

Urban Main Road

Elevated and Expressway

（a）

（b） （c）
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Fig. 13A, the most serious waterlogging is in the residential and uni-
versities areas, which have dense POIs around these waterlogging lo-
cations, more developed economies, and higher road grades. The risk 
caused by waterlogging in these areas is greater, which seriously affect 
the life of the surrounding residents and traffic travel (Zeng et al., 2020). 

We grouped the locations of waterlogging according to urban func-
tions and discussed them using one-way analysis of variance (ANOVA). 
As shown in Fig. 13B, there is a significant difference in the number of 
POIs around public serv and residence functional zones containing water 
hazards (p = 0.002). Residence functional areas have more POI infor-
mation, followed by commercial areas and universities. At the confi-
dence level of p = 0.081, there is a significant difference in the number 
of POIs in the different functional zones of the city. In contrast, the 
difference in the number of waterlogging in different functional areas 
was not significant (p = 0.41). Even though the number of waterlogging 
in the two areas is similar, the impact on the city varies greatly. The 
impact of flooding is not only related to the severity of the hazard, but 
also to the socio-economic factors surrounding the location of flooding, 
with flooding in busy areas and major transportation routes causing 
more serious impacts on the city. It means that mining the socio- 
economic attributes of different functional areas has more important 
value for the differentiation and research of flooding risk (Wang et al., 
2015). 

6. Conclusion and prospect 

Urban flooding has a wide range of impact and high intensity in a 
short period of time, and its risk detection is a very meaningful research 
direction (Kankanamge et al., 2020). We took the July-September floods 
in Wuhan as a research object and provided an effective solution for 
flood risk detection and assessment using social sensing data. The BERT- 
Bi-LSTM-CRF model is introduced into the identification of flooding 
locations and irrelevant locations for the first time. It greatly improves 
the identification accuracy based on the pre-trained prior knowledge 
and the semantic information of the context in social media texts. 
Considering the different social attributes of different waterlogged 
location (Steiger et al., 2016), we proposed a new GeoSemantic2vec 
algorithm for urban functional zone. The algorithm combines semantic 
information about the location of flooding and mines it for socio- 
economic information. 

Data such as POI, cab tracks, Twitter, Flickr photos, etc., which re-
cord human behavioral activities, are abundant in the urban space. By 
using these spontaneous VGI data, we can make use of the semantic 
information to portray the functional areas of the city and build a “City 
Portrait”. The GeoSemantic2vec method proposed in this paper is suit-
able for areas with more human activities and more developed socio- 
economics, where the density of POIs is high and can provide rich se-
mantic information. The method can use the historical POI data of 
multiple years to analyze the land use change trend of cities; and use the 
POI data of multiple cities to build a global City Portrait database. 

The paper still has certain shortcomings; it does not consider the 
floor area of POI for weighting; the urban functional areas classified as 
Other need to continue to be refined; due to the limitation of arithmetic 
power, the spatial resolution we set is low, and the semantic information 
obtained is relatively limited; and the results of urban function identi-
fication, and the classification criteria of remote sensing images do not 
fully match, which is pending for new supervised classification algo-
rithms. In the future, we will try to use small samples of urban social 
sensing data for fast real-time, large-scale flood location detection and 
risk assessment. 
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